Dynamic studies of film nanostructure by Grazing Incidence X-ray Scattering

Kristin Høydalsvik Twilight Barnardo Rudi Winter

CAFMAD Centre for Advanced Functional Materials and Devices

Yttria-stabilised zirconia films

- Coatings
- ZrO₂ films:
- good chemical and dimensional stability
- high melting point
- low thermal conductivity
- high wear resistance

WF Li, XY Liu, AP Huang, PX Chu, *J. Phys. D.* 40 (2007) 2293 – 2299

Yttria doping

• ZnO films: solar cell applications

•L. Bahadur, M. Hamdani, J.F. Koenig, P. Chartier, Solar Energy Mater. 14 (1986) 107-120

SiO₂ films: strengthening of glass

•B.D. Fabes, W.F. Doyle, B.J.J. Zelinski, L.A. Silverman, D.R. Uhlmann, J. Non-Cryst. Solids 82 (1986) 349-355

- Zr precursor:
- chelating agent:
- buffer:
- solvent:

Zr(nPrO)4 acetyl acetone acetic acid iso-propanol

- reaction starter: water
- Y source: Y(NO3)3

- Bespoke sample environments
- Dynamic GISAXS
- Combined in-situ techniques
- Chemical contrast

The Ystwyth Dipper

A - sample at beam position

- **B** furnace
- **C** hotplate

The Ystwyth Dipper

The Ystwyth Dipper

In-situ dip-coating experiment

700°C

- Bespoke sample environments
- Dynamic GISAXS
- Combined in-situ techniques
- Chemical contrast

reflected beam

'horizon'

through beam

<u>Geograph</u> image © <u>Simon Johnston</u> under <u>Creative Commons licence</u>

GISAXS geometry

GISAXS furnace

- Kapton windows
- water cooled hood
- He atmosphere possible
- up to 1100°C

In-situ GISAXS of YSZ film calcination

Coping with changing surfaces

Lateral scattering patterns: film morphology

with Dragomir Tatchev (BAS Sofia) Sylvio Haas, Armin Hoell (HZB Berlin)

K Hoydalsvik et al. *Phys Chem Chem Phys (2010) adv. art.*

- particle size increases
- internal surfaces become smoother, then rougher again
- particle distance increases

Visualisation of film calcination process

- Bespoke sample environments
- Dynamic GISAXS
- Combined in-situ techniques
- Chemical contrast

Combining scattering and imaging

in-situ Grazing-incidence SAXS and 2D imaging ellipsometry

Combining scattering and imaging

in-situ Grazing-incidence SAXS and 2D imaging ellipsometry

with Matt Gunn, Dave Langstaff (Aber) Dragomir Tatchev (BAS Sofia) Sylvio Haas, Armin Hoell (HZB Berlin)

in-situ Grazing-incidence SAXS and 2D imaging ellipsometry

- Bespoke sample environments
- Dynamic GISAXS
- Combined in-situ techniques
- Chemical contrast

Chemical contrast

The anomalous scatterer's periodic table

Double edge experiments

with Chris Martin, Graham Clark (STFC) *T Barnardo et al., J Phys Chem C 113 (2009) 10021*

Calcination of bulk YSZ gel

macro-scatter increase in magnitude only => nucleation Note difference in resonant term!

Calcination of bulk YSZ gel

Chemical contrast

- measure and subtract fluorescence explicitly
- spectroscopic scattering

with Simon Cooil (Aber) Nick Terrill, Tobias Richter, Marc Malfois (Diamond)

• Bespoke sample environments realistic in-situ conditions modelled on use conditions

